

Menuju Masyarakat Informasi Indonesia

PERATURAN DIREKTUR JENDERAL SUMBER DAYA DAN PERANGKAT POS DAN INFORMATIKA NOMOR 3 TAHUN 2021

TENTANG

STANDAR TEKNIS PERANGKAT TELEKOMUNIKASI MODEM COAXIAL CABLE HOME NETWORK

DIREKTUR JENDERAL SUMBER DAYA DAN PERANGKAT POS DAN INFORMATIKA.

Menimbang : a.

- a. bahwa sesuai dengan ketentuan Pasal 2 ayat (2) Peraturan Menteri Komunikasi dan Informatika Nomor 16 Tahun 2018 tentang Ketentuan Operasional Sertifikasi Alat dan/atau Perangkat Telekomunikasi, Persyaratan Teknis Alat dan/atau Perangkat Telekomunikasi diatur dengan Peraturan Direktur Jenderal;
- b. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a, perlu menetapkan Peraturan Direktur Jenderal Sumber Daya dan Perangkat Pos dan Informatika tentang Standar Teknis Perangkat Telekomunikasi Modem *Coaxial Cable Home Network*;

Mengingat

: 1. Undang-Undang Nomor 36 Tahun 1999 tentang Telekomunikasi (Lembaran Negara Republik Indonesia Tahun 1999 Nomor 154, Tambahan Lembaran Negara Republik Indonesia Nomor 3881);

- Undang-Undang Nomor 11 Tahun 2020 tentang Cipta Kerja (Lembaran Negara Republik Indonesia Tahun 2020 Nomor 245, Tambahan Lembaran Negara Republik Indonesia Nomor 6573);
- Peraturan Pemerintah Nomor 53 Tahun 2000 tentang Penggunaan Spektrum Frekuensi Radio dan Orbit Satelit (Lembaran Negara Republik Indonesia Tahun 2000 Nomor 108, Tambahan Lembaran Negara Nomor 3981);
- Peraturan Pemerintah Nomor 46 Tahun 2021 tentang Pos, Telekomunikasi, dan Penyiaran (Lembaran Negara Republik Indonesia Tahun 2021 Nomor 56, Tambahan Lembaran Negara Republik Indonesia Nomor 6658);
- Peraturan Presiden Nomor 54 Tahun 2015 tentang Kementerian Komunikasi dan Informatika (Lembaran Negara Republik Indonesia Tahun 2015 Nomor 96);
- Peraturan Menteri Komunikasi dan Informatika Nomor 6
 Tahun 2018 tentang Organisasi dan Tata Kerja
 Kementerian Komunikasi dan Informatika (Berita Negara
 Republik Indonesia Tahun 2018 Nomor 1019);
- 7. Peraturan Menteri Komunikasi dan Informatika Nomor 9 Tahun 2018 tentang Ketentuan Operasional Penggunaan Spektrum Frekuensi Radio (Berita Negara Republik Indonesia Tahun 2018 Nomor 1142);
- 8. Peraturan Menteri Komunikasi dan Informatika Nomor 16 Tahun 2018 tentang Ketentuan Operasional Sertifikasi Alat dan/atau Perangkat Telekomunikasi (Berita Negara Republik Indonesia Tahun 2018 Nomor 1801);

MEMUTUSKAN:

Menetapkan : PERATURAN DIREKTUR JENDERAL SUMBER DAYA DAN PERANGKAT POS DAN INFORMATIKA TENTANG STANDAR TEKNIS PERANGKAT TELEKOMUNIKASI MODEM COAXIAL CABLE HOME NETWORK.

Pasal 1

Setiap perangkat telekomunikasi Modem Coaxial Cable Home Network yang dibuat, dirakit, dimasukkan untuk diperdagangkan dan/atau digunakan di wilayah Negara wajib memenuhi standar Republik Indonesia teknis sebagaimana tercantum dalam Lampiran yang merupakan bagian tidak terpisahkan dari Peraturan Direktur Jenderal ini.

Pasal 2

- (1) Persyaratan kekebalan terhadap gangguan elektromagnetik sebagaimana tercantum dalam Lampiran yang merupakan bagian tidak terpisahkan dari Peraturan Direktur Jenderal ini wajib dipenuhi apabila paling sedikit 2 (dua) balai uji dalam negeri sudah mampu melakukan pengujian kekebalan terhadap gangguan elektromagnetik dengan ruang lingkup CISPR 35 atau SNI ISO/IEC CISPR 35.
- (2) Persyaratan keselamatan listrik sebagaimana tercantum dalam Lampiran yang merupakan bagian tidak terpisahkan dari Peraturan Direktur Jenderal ini wajib dipenuhi apabila paling sedikit 2 (dua) balai uji dalam negeri sudah mampu melakukan pengujian keselamatan listrik dengan ruang lingkup IEC 60950-1 dan/atau IEC 62368-1.

Pasal 3

Penilaian terhadap pemenuhan kewajiban setiap perangkat telekomunikasi Modem *Coaxial Cable Home Network* dalam memenuhi standar teknis sebagaimana dimaksud dalam Pasal 1 dilaksanakan melalui sertifikasi sesuai dengan ketentuan peraturan perundang-undangan.

Pasal 4

Peraturan Direktur Jenderal ini mulai berlaku sejak tanggal ditetapkan.

Ditetapkan di Jakarta pada tanggal 15 Maret 2021

DIREKTUR JENDERAL SUMBER DAYA DAN PERANGKAT POS DAN INFORMATIKA,

ISMAIL

LAMPIRAN

PERATURAN DIREKTUR JENDERAL SUMBER DAYA PERANGKAT POS DAN INFORMATIKA NOMOR 3 TAHUN 2021

TENTANG

STANDAR TEKNIS PERANGKAT
TELEKOMUNIKASI MODEM COAXIAL CABLE
HOME NETWORK

STANDAR TEKNIS PERANGKAT TELEKOMUNIKASI MODEM COAXIAL CABLE HOME NETWORK

BAB I KETENTUAN UMUM

A. Definisi

Perangkat telekomunikasi Modem Coaxial Cable Home Network yang selanjutnya disebut Modem CCHN adalah perangkat yang memungkinkan transmisi data Ethernet menggunakan medium kabel koaksial di dalam rumah atau bangunan.

B. Contoh Konfigurasi

Gambar 1. Contoh konfigurasi Modem CCHN

C. Singkatan

AC : Alternating Current

CISPR : Comité International Spécial des Perturbations Radio

CB : Coaxial Baseband

CRF : Coaxial Radio Frequency

dBm : *Decibel-milliwatt*

DC : Direct Current

EMC : Electromagnetic Compatibility

GHz : Giga Hertz

Hz : Hertz

IEC : International Electrotechnical Commission

IEEE : Institute of Electrical and Electronics Engineering

ITU : International Telecommunication Union

MHz : Mega Hertz

MoCA : Multimedia over Cable Alliance

OFDM : Orthogonal Frequency Division Multiplexing

RF : Radio Frequency

SELV : Safety Extra Low Voltage

SNI : Standar Nasional Indonesia

V : Volt

BAB II

STANDAR TEKNIS

A. Persyaratan Umum

Setiap Modem CCHN wajib memenuhi karakteristik umum yaitu:

1. Catu Daya

Modem CCHN dapat dicatu dengan daya AC maupun DC. Untuk perangkat dengan catu daya AC, perangkat harus beroperasi normal dengan catuan 220 V ± 10 % dan frekuensi 50 Hz ± 6 %.

Dalam hal perangkat menggunakan catuan eksternal, misalnya adaptor AC, catuan tersebut harus tidak mempengaruhi kemampuan operasi perangkat.

2. Persyaratan EMC

a. Emisi

Pengukuran emisi berikut harus dilakukan pada Modem CCHN apabila memungkinkan:

- 1) Emisi radiasi Modem CCHN harus memenuhi persyaratan Kelas B yang ditentukan pada Tabel A.4 dan Tabel A.5 sesuai dengan klausul 4 SNI ISO/IEC CISPR 32;
- 2) Emisi konduksi pada *port* daya DC Modem CCHN harus memenuhi persyaratan Kelas B yang ditentukan pada Tabel A.10 sesuai dengan klausul 4 SNI ISO/IEC CISPR 32;
- 3) Emisi konduksi pada *port* catuan AC Modem CCHN dengan konverter daya AC/DC khusus harus memenuhi persyaratan Kelas B yang ditentukan pada Tabel A.10 sesuai dengan klausul 4 SNI ISO/IEC CISPR 32 (Modem CCHN dengan *port* daya DC yang dicatu dengan adaptor atau konverter daya AC/DC khusus dianggap sebagai perangkat dengan catu daya AC (klausul 3.1.1 SNI ISO/IEC CISPR 32)); dan
- 4) Emisi konduksi pada *port* jaringan kabel harus memenuhi persyaratan Kelas B yang ditentukan pada Tabel A.12 sesuai dengan klausul 4 SNI ISO/IEC CISPR 32.

b. Kekebalan

Pengukuran kekebalan berikut harus dilakukan pada Modem CCHN apabila memungkinkan dan harus memenuhi ketentuan dalam SNI ISO/IEC CISPR 35:

- 1) Medan elektromagnetik RF (80 MHz sampai 1 GHz) pada selubung Modem CCHN;
- 2) Pelepasan elektrostatik pada selubung Modem CCHN;
- 3) Fast transients (common mode) pada port catu daya DC dan AC yang memiliki kabel lebih panjang dari 3 m;
- 4) RF common mode 0,15 MHz sampai 80 MHz pada port catu daya DC dan AC yang memiliki kabel lebih panjang dari 3 m;
- 5) *Voltage dips* dan interupsi pada *port* catu daya AC Modem CCHN dengan konverter daya AC/DC khusus; dan
- 6) Lonjakan listrik, *common mode* dan *differential mode* pada *port* catu daya Modem CCHN dengan konverter AC/DC khusus.

3. Persyaratan Keselamatan Listrik

- a. Penilaian keselamatan listrik Modem CCHN harus memenuhi persyaratan yang ditentukan dalam IEC 60950-1 atau IEC 62368-1 berdasarkan asumsi berikut:
 - 1) Modem CCHN dicatu dengan sebuah catu daya eksternal khusus (konverter AC/DC atau adaptor/pengisi daya);
 - 2) Modem CCHN beroperasi dengan SELV pada lingkungan dimana kelebihan tegangan dari jaringan telekomunikasi tidak mungkin terjadi. SELV merujuk pada tegangan yang tidak melebihi 42,4 V puncak atau 60 V DC.
- b. Untuk penilaian keselamatan Modem CCHN yang dilakukan dengan pendekatan berbasis risiko, proses yang ditentukan dalam IEC 62368-1 berikut harus digunakan:
 - 1) Identifikasi sumber energi dalam Modem CCHN;
 - Klasifikasi sumber energi (dampak pada tubuh atau material yang mudah terbakar, seperti kemungkinan cedera atau pengapian);
 - Identifikasi usaha perlindungan terhadap sumber energi;
 dan
 - 4) Mempertimbangkan efektivitas usaha perlindungan dengan mempertimbangkan kriteria pemenuhan atau persyaratan yang ditentukan dalam standar IEC 62368-1.

B. Persyaratan Interoperabilitas

Modem CCHN harus memiliki jenis antarmuka sesuai dengan persyaratan interoperabilitas berikut:

- 1. Antarmuka Koaksial
 - a. Konektor

Antarmuka koaksial harus menggunakan konektor bertipe F (IEC 60169-24) dengan nilai impedansi sebesar 75 Ohm.

b. Protokol

Salah satu protokol sebagai berikut harus digunakan:

1) MoCA

Antarmuka harus sesuai dengan MoCA 1.1, MoCA 2.0 dan/atau MoCA 2.5 dengan karakteristik sebagai berikut:

a) Frekuensi Radio

Antarmuka yang menggunakan protokol MoCA harus beroperasi pada salah satu frekuensi radio yang terdapat pada Tabel 1, Tabel 2, Tabel 3, Tabel 4, Tabel 5 atau Tabel 6.

Tabel 1. Frekuensi Radio MoCA

Pita	Nomor Kanal	Frekuensi Radio (MHz)
A	A1	875
В	B1	900
Б	C1	925
	C1	950
С	C2	975
	C3 C4	
		1000
	D1	1150
	D2	1200
	D3	1250
D	D4	1300
	D5	1350
	D6	1400
	D7	1450
	D8	1500
	E1	500
	E2	525
E	E3	550
	E4	575
	E5	600
	F1	675
	F2	700
	F3	725
15	F4	750
F	F5	775
	F6	800
	F7	825
	F8	850
	G1	500
	G2	550
	G3	600
G	G4	650
	G5	700
	G6	750
	G7	800
	H1	975
Н	H1	1000
11	Н3	1025
	110	1020

Tabel 2. Frekuensi Radio Pita D tambahan untuk MoCA 2.0

Kanal	Frekuensi Radio (MHz)
D1	1150
D1a	1175
D2	1200
D2a	1225
D3	1250
D3a	1275
D4	1300
D4a	1325
D5	1350
D5a	1375
D6	1400
D6a	1425
D7	1450
D7a	1475
D8	1500
D8a	1525
D9	1550
D9a	1575
D10	1600
D10a	1625

Tabel 3. Frekuensi Radio Pita E tambahan untuk MoCA 2.0

Kanal	Frekuensi Radio (MHz)
EE1	450
EE2	475
E1	599
E2	525
E3	550
E4	575
E5	600
EE3	625
EE4	650

Tabel 4. Frekuensi Radio Pita F tambahan untuk MoCA 2.0

Kanal	Frekuensi Radio (MHz)
F1	675
F2	700
F3	725
F4	750
F5	775
F6	800
F7	825
F8	850

Tabel 5. Frekuensi kerja Pita D tambahan untuk MoCA 2.5

	Frekuensi Radio (MHz)					
Kanal	Kanal	Kanal	Kanal	Kanal	Kanal	
	pertama	kedua	ketiga	keempat	kelima	
D2p5-1	1175	1275	1375	1475	1575	
D2p5-2	1200	1300	1400	1500	1600	
D2p5-3	1225	1325	1425	1525	1625	
D2p5-4	1250	1350	1450	1550	-	
D2p5-5	1275	1375	1475	1575	-	
D2p5-6	1300	1400	1500	1600	-	
D2p5-7	1325	1425	1525	1625	-	
D2p5-8	1350	1450	1550	-	-	
D2p5-9	1375	1475	1575	-	-	
D2p5-10	1400	1500	1600	-	-	
D2p5-11	1425	1525	1625	-	-	

Tabel 6. Frekuensi kerja Pita E tambahan untuk MoCA 2.5

Kanal	Frekuensi Kerja (MHz)			
Kanai	Kanal pertama Kanal kedua Kanal ketiga			
E2p5-1	450	550	650	

b) Modulasi

Antarmuka yang menggunakan protokol MoCA harus menggunakan teknik modulasi OFDM.

c) Total daya ouput maksimal

Daya *output* maksimal per kanal dan total daya *output* maksimal harus sesuai dengan Tabel 7.

Tabel 7. Total Output Maksimal

Mode	Jumlah kanal	Lebar pita per kanal (MHz)	Daya <i>output</i> maksimal per kanal	Total daya <i>output</i> maksimal
MoCA Beacon	1	50	-1 dBm sampai	-1 dBm sampai
			+7 dBm	+7 dBm
MoCA 1 PHY	1	50	-1 dBm sampai	-1 dBm sampai
	1	50	+7 dBm	+7 dBm
MoCA 2.0 PHY	1	100	-1 dBm sampai	-1 dBm sampai
	1	100	+7 dBm	+7 dBm
MoCA 2.0	2	100	-1 dBm sampai	+2 dBm sampai
Bonded-PHY	4	100	+7 dBm	+10 dBm
MoCA 2.5	2	100	-3 dBm sampai	0 dBm sampai +8
Bonded-PHY	4	100	+5 dBm	dBm
MoCA 2.5 PHY	3	100	-4.5 dBm sampai	+0.3 dBm sampai
	J	100	+3.5 dBm	+8.3 dBm
MoCA 2.5 PHY	4	100	-5.3 dBm sampai	+0.7 dBm sampai
	7	100	+2.7 dBm	+8.7 dBm

Mode	Jumlah kanal	Lebar pita per kanal (MHz)	Daya <i>output</i> maksimal per kanal	Total daya <i>output</i> maksimal
MoCA 2.5 PHY	5	100	-6 dBm sampai +2 dBm	+1 dBm sampai +9 dBm

d) Power Spectral Density

Power spectral density pada antarmuka yang menggunakan protokol MoCA harus sesuai dengan klausul 2.4 dari standar MoCA 2.0/2.5 Specification for Device RF Characteristics yang diterbitkan oleh MoCA Alliance.

2) ITU G.hn

Antarmuka harus sesuai dengan ITU-T Rec. G.9960 dengan karakteristik sebagai berikut:

a) Frekuensi operasi

Antarmuka yang menggunakan protokol ITU G.hn harus beroperasi pada frekuensi tengah sesuai dengan Tabel 8.

Tabel 8. Frekuensi kerja ITU G.hn berbasis koaksial (ITU-T Rec. G.9964)

Туре	Coax baseband		Coax RF	
Bandplan	50 MHz-CB 100 MHz-CB		50 MHz-CRF	100 MHz-CRF
Frekuensi Radio	25 MHz 50 MHz		F_{UC} + 25 MHz	F_{UC} + 50 MHz
Lebar pita	50 MHz	50 MHz 100 MHz		100 MHz

Keterangan:

- 1. F_{UC} merupakan *up-shift frequency* dalam kHz.
- 2. F_{VC} dapat dihitung dengan rumus $m \times F_{SC}$ dan $m \ge N/2$, dimana m merupakan suatu bilangan integer, F_{SC} merupakan subcarrier spacing (Tabel 9) dan N merupakan jumlah subcarrier (Tabel 9).
- 3. F_{UC} pada saat pengujian dihitung dengan menggunakan salah satu nilai m yang valid.

b) Modulasi

Antarmuka yang menggunakan protokol ITU G.hn harus menggunakan teknik modulasi OFDM dengan parameter pada Tabel 9.

Tabel 9. Parameter modulasi ITU G.hn berbasis koaksial (ITU-T Rec. G.9964)

Туре	Coax baseband		Coax RF	
Bandplan	50 MHz-CB 100 MHz-CB		50 MHz-CRF	100 MHz-CRF
N	256	512	256	256
F_{SC}	195.3125 kHz	195.3125 kHz	195.3125 kHz	195.3125 kHz

c) Total daya transmisi

Total daya transmisi tidak boleh melebihi nilai yang terdapat pada Tabel 10.

Tabel 10. *Limit* Total Daya Transmisi (ITU-T Rec. G.9964)

Туре	Coax baseband		Coax RF	
Bandplan	50 MHz-CB 100 MHz-CB		50 MHz-CRF	100 MHz-CRF
Limit daya (dBm)	-1 +2		+5	+8
Rentang frekuensi	0.005 - 100	0.005 - 100	$(F_{UC}$ -100) –	(F _{UC} -150) -
pengukuran (MHz)	0.003 - 100	0.003 - 100	$(F_{UC}+100)$	$(F_{UC}+150)$

d) Power Spectral Density

Power spectral density pada antarmuka yang menggunakan protokol ITU G.hn harus sesuai dengan klausul 6.3.2 dari rekomendasi ITU-T G.9964.

2. Antarmuka *Ethernet*

Antarmuka harus sesuai dengan jenis protokol 1000BASE-T (IEEE 802.3ab-1999). Verifikasi dapat dilakukan melalui *plug-test*.

BAB III METODE PENGUJIAN

Pengujian Modem CCHN dilaksanakan sesuai dengan atau berdasarkan metode pengujian yang dikembangkan dan divalidasi oleh balai uji yang terakreditasi.

> DIREKTUR JENDERAL SUMBER DAYA DAN PERANGKAT POS DAN INFORMATIKA,

> > **ISMAIL**